C-VQA: A Compositional Split of the Visual Question Answering (VQA) v1.0 Dataset

نویسندگان

  • Aishwarya Agrawal
  • Aniruddha Kembhavi
  • Dhruv Batra
  • Devi Parikh
چکیده

Visual Question Answering (VQA) has received a lot of attention over the past couple of years. A number of deep learning models have been proposed for this task. However, it has been shown [1–4] that these models are heavily driven by superficial correlations in the training data and lack compositionality – the ability to answer questions about unseen compositions of seen concepts. This compositionality is desirable and central to intelligence. In this paper, we propose a new setting for Visual Question Answering where the test question-answer pairs are compositionally novel compared to training question-answer pairs. To facilitate developing models under this setting, we present a new compositional split of the VQA v1.0 [5] dataset, which we call Compositional VQA (C-VQA). We analyze the distribution of questions and answers in the C-VQA splits. Finally, we evaluate several existing VQA models under this new setting and show that the performances of these models degrade by a significant amount compared to the original VQA setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Human-like Attention Supervision in Visual Question Answering

Attention mechanisms have been widely applied in the Visual Question Answering (VQA) task, as they help to focus on the area-of-interest of both visual and textual information. To answer the questions correctly, the model needs to selectively target different areas of an image, which suggests that an attention-based model may benefit from an explicit attention supervision. In this work, we aim ...

متن کامل

VizWiz Grand Challenge: Answering Visual Questions from Blind People

The study of algorithms to automatically answer visual questions currently is motivated by visual question answering (VQA) datasets constructed in artificial VQA settings. We propose VizWiz, the first goal-oriented VQA dataset arising from a natural VQA setting. VizWiz consists of over 31,000 visual questions originating from blind people who each took a picture using a mobile phone and recorde...

متن کامل

VQA-E: Explaining, Elaborating, and Enhancing Your Answers for Visual Questions

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-...

متن کامل

Human Attention in Visual Question Answering: Do Humans and Deep Networks look at the same regions?

We conduct large-scale studies on ‘human attention’ in Visual Question Answering (VQA) to understand where humans choose to look to answer questions about images. We design and test multiple game-inspired novel attention-annotation interfaces that require the subject to sharpen regions of a blurred image to answer a question. Thus, we introduce the VQA-HAT (Human ATtention) dataset. We evaluate...

متن کامل

The Promise of Premise: Harnessing Question Premises in Visual Question Answering

In this paper, we make a simple observation that questions about images often contain premises – objects and relationships implied by the question – and that reasoning about premises can help Visual Question Answering (VQA) models respond more intelligently to irrelevant or previously unseen questions. When presented with a question that is irrelevant to an image, state-of-the-art VQA models wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.08243  شماره 

صفحات  -

تاریخ انتشار 2017